Publications

2017

[1]   I. Albarran, M. Bouhmadi-López, C.-Y. Chen, P. Chen, Doomsdays in a modified theory of gravity: A classical and a quantum approach, Physics Letters B 772 (2017) 814–818. 
URL https://doi.org/10.1016/j.physletb.2017.07.053

[2]   I. Albarran, M. Bouhmadi-López, J. Morais, Cosmological perturbations in an effective and genuinely phantom dark energy Universe, Physics of the Dark Universe 16 (2017) 94–108. 
URL https://doi.org/10.1016/j.dark.2017.04.002

[3]   I. Albarran, M. Bouhmadi-López, J. Morais, Cosmological Perturbations in Phantom Dark Energy Models, Universe 3 (1) (2017) 22. 
URL https://doi.org/10.3390/universe3010022

[4]   C. R. Almeida, A. B. Batista, J. C. Fabris, P. V. Moniz, Quantum cosmology of scalar-tensor theories and self-adjointness, J. Math. Phys. 58 (4) (2017) 042301, 13. 
URL https://doi.org/10.1063/1.4979537

[5]   R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque, Discrete solutions for the porous medium equation with absorption and variable exponents, Math. Comput. Simulation 137 (2017) 109–129. 
URL https://doi.org/10.1016/j.matcom.2016.12.008

[6]   R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque, On the finite element method for a nonlocal degenerate parabolic problem, Comput. Math. Appl. 73 (8) (2017) 1724–1740. 
URL https://doi.org/10.1016/j.camwa.2017.02.013

[7]   M. Arrais, O. Lulua, F. Quifica, J. Rosado-Pinto, J. M. R. Gama, L. Taborda-Barata, Prevalence of asthma and allergies in 13-14-year-old adolescents from luanda, angola, International Journal of Tuberculosis and Lung Disease 21 (6) (2017) 705–712. 
URL https://doi.org/10.5588/ijtld.16.0530

[8]   S. Banerjee, S. Das, K. S. Kumar, T. P. Singh, Signatures of spontaneous collapse-dynamics-modified single-field inflation, Phys. Rev. D 95 (10) (2017) 103518. 
URL https://doi.org/10.1103/PhysRevD.95.103518

[9]   N. Bebiano, J. da Providência, A. Nata, J. P. da Providência, Fields of values of linear pencils and spectral inclusion regions, in: Applied and computational matrix analysis, vol. 192 of Springer Proc. Math. Stat., Springer, Cham, 2017, pp. 165–179. 
URL https://doi.org/10.1007/978-3-319-49984-0_12

[10]   N. Bebiano, J. da Providência, A. Nata, J. P. da Providência, Generalized Rayleigh quotients and generating vectors, Linear Multilinear Algebra 65 (1) (2017) 1–23. 
URL https://doi.org/10.1080/03081087.2016.1164663

[11]   P. D. Beites, A. P. Nicolás, A note on standard composition algebras of types II and III, Adv. Appl. Clifford Algebr. 27 (2) (2017) 955–964. 
URL https://doi.org/10.1007/s00006-016-0668-8

[12]   P. D. Beites, A. P. Nicolás, J. Vitória, On skew-symmetric matrices related to the vector cross product in 7, Electron. J. Linear Algebra 32 (2017) 138–150. 
URL https://doi.org/10.13001/1081-3810.3498

[13]   A. J. G. Bento, N. Lupa, M. Megan, C. M. Silva, Integral conditions for nonuniform μ-dichotomy on the half-line, Discrete Contin. Dyn. Syst. Ser. B 22 (8) (2017) 3063–3077. 
URL https://doi.org/10.3934/dcdsb.2017163

[14]   A. J. G. Bento, J. J. Oliveira, C. M. Silva, Nonuniform behavior and stability of Hopfield neural networks with delay, Nonlinearity 30 (8) (2017) 3088–3103. 
URL https://doi.org/10.1088/1361-6544/aa773b

[15]   A. J. G. Bento, C. Tomás da Costa, Global Lipschitz Invariant Center Manifolds for ODEs with Generalized Trichotomies, Electron. J. Qual. Theory Differ. Equ. (2017) Paper No. 90, 26 pp. 
URL https://doi.org/10.14232/ejqtde.2017.1.90

[16]   A. Bernardino, R. Pacheco, M. Silva, Coloring factors of substitutive infinite words, Discrete Math. 340 (3) (2017) 443–451. 
URL https://doi.org/10.1016/j.disc.2016.09.013

[17]   M. Bessa, The flowbox theorem for divergence-free Lipschitz vector fields, C. R. Math. Acad. Sci. Paris 355 (8) (2017) 881–886. 
URL https://doi.org/10.1016/j.crma.2017.07.006

[18]   M. Bessa, J. Bochi, M. Cambrainha, C. Matheus, P. Varandas, D. Xu, Positivity of the top lyapunov exponent for cocycles on semisimple lie groups over hyperbolic bases, Bulletin of the Brazilian Mathematical Society (2017) 1–15. 
URL https://doi.org/10.1007/s00574-017-0048-6

[19]   M. Bessa, C. Ferreira, J. Rocha, P. Varandas, Generic Hamiltonian dynamics, J. Dynam. Differential Equations 29 (1) (2017) 203–218. 
URL https://doi.org/10.1007/s10884-015-9441-2

[20]   M. Bessa, J. Lopes Dias, M. J. Torres, On shadowing and hyperbolicity for geodesic flows on surfaces, Nonlinear Anal. 155 (2017) 250–263. 
URL https://doi.org/10.1016/j.na.2017.02.006

[21]   T. Biswas, A. S. Koshelev, A. Mazumdar, Consistent higher derivative gravitational theories with stable de Sitter and anti-de Sitter backgrounds, Phys. Rev. D 95 (4) (2017) 043533. 
URL https://doi.org/10.1103/PhysRevD.95.043533

[22]   M. Bouhmadi-López, I. Albarran, C.-Y. Chen, Quantum Cosmology of the Big Rip: Within GR and in a Modified Theory of Gravity, Universe 3 (2) (2017) 36. 
URL https://doi.org/10.3390/universe3020036

[23]   M. Bouhmadi-López, J. Marto, J. Morais, C. M. Silva, Cosmic infinity: a dynamical system approach, J. Cosmol. Astropart. Phys. (3) (2017) 042. 
URL https://doi.org/10.1088/1475-7516/2017/03/042

[24]   I. Brás, A. C. Carapito, P. Rocha, Stability of simultaneously block triangularisable switched systems with partial state reset, Internat. J. Control 90 (3) (2017) 444–453. 
URL https://doi.org/10.1080/00207179.2016.1183174

[25]   R. Campos, G. Dias, A. Jorge, C. Nunes, Identifying top relevant dates for implicit time sensitive queries, Information Retrieval Journal 20 (4) (2017) 363–398. 
URL https://doi.org/10.1007/s10791-017-9302-1

[26]   L. P. Castro, A. M. Simões, Different types of Hyers-Ulam-Rassias stabilities for a class of integro-differential equations, Filomat 31 (17) (2017) 5379–590. 
URL https://doi.org/10.2298/FIL1717379C

[27]   A. Conroy, A. S. Koshelev, A. Mazumdar, Defocusing of null rays in infinite derivative gravity, J. Cosmol. Astropart. Phys. (1) (2017) 017. 
URL https://doi.org/10.1088/1475-7516/2017/01/017

[28]   N. Correia, R. Pacheco, Harmonic spheres in outer symmetric spaces, their canonical elements and Weierstrass-type representations, Manuscripta Math. 152 (3-4) (2017) 399–432. 
URL https://doi.org/10.1007/s00229-016-0862-y

[29]   A. Costa, M. Costa, A. Reis, S. Ferreira, J. Martins, A. Pereira, Secular trends in anthropometrics and physical fitness of young portuguese school-aged children [tendências seculares dos níveis antropométricos e de aptidão física em crianças portuguesas], Acta Medica Portuguesa 30 (2) (2017) 108–114. 
URL https://doi.org/10.20344/amp.7712

[30]   H. F. da Cruz, G. Dolinar, R. Fernandes, B. Kuzma, Maximal doubly stochastic matrix centralizers, Linear Algebra Appl. 532 (2017) 387–396. 
URL https://doi.org/10.1016/j.laa.2017.06.029

[31]   H. F. da Cruz, R. Fernandes, S. Furtado, Minimal matrices in the Bruhat order for symmetric (0,1)-matrices, Linear Algebra Appl. 530 (2017) 160–184. 
URL https://doi.org/10.1016/j.laa.2017.05.014

[32]   H. F. da Cruz, I. I. Rodrigues, R. Serôdio, A. Simões, J. Velhinho, Convertible subspaces of hessenberg-type matrices, Mathematics 5 (4) (2017) 79. 
URL https://doi.org/10.3390/math5040079

[33]   D. Ferreira, S. Ferreira, C. Nunes, M. Fonseca, A. Silva, J. T. Mexia, Estimation and incommutativity in mixed models, J. Multivariate Anal. 161 (2017) 58–67. 
URL https://doi.org/10.1016/j.jmva.2017.07.002

[34]   D. Ferreira, S. S. Ferreira, C. Nunes, J. T. Mexia, Estimation in mixed models through three step minimization, Comm. Statist. Simulation Comput. 46 (2) (2017) 1156–1166. 
URL https://doi.org/10.1080/03610918.2014.992544

[35]   M. Ferreira, H. Ferreira, Analyzing the Gaver-Lewis Pareto Process under an Extremal Perspective, RISKS 5 (3) (2017) 33. 
URL {https://doi.org/10.3390/risks5030033}

[36]   S. Giardino, Four-dimensional conformal field theory using quaternions, Adv. Appl. Clifford Algebr. 27 (3) (2017) 2457–2471. 
URL https://doi.org/10.1007/s00006-017-0781-3

[37]   S. Giardino, Möbius transformation for left-derivative quaternion holomorphic functions, Adv. Appl. Clifford Algebr. 27 (2) (2017) 1161–1173. 
URL https://doi.org/10.1007/s00006-016-0673-y

[38]   S. Giardino, Quaternionic Aharonov-Bohm effect, Adv. Appl. Clifford Algebr. 27 (3) (2017) 2445–2456. 
URL https://doi.org/10.1007/s00006-017-0766-2

[39]   S. Jalalzadeh, A. J. S. Capistrano, P. V. Moniz, Quantum deformation of quantum cosmology: A framework to discuss the cosmological constant problem, Physics of the Dark Universe 18 (2017) 55–66. 
URL https://doi.org/10.1016/j.dark.2017.09.011

[40]   A. Jorge, E. Soares, E. Sarinho, F. Lorente, J. Gama, L. Taborda-Barata, Prevalence and clinical features of adverse food reactions in portuguese children, Allergy, Asthma and Clinical Immunology 13 (1). 
URL https://doi.org/10.1186/s13223-017-0212-y

[41]   A. S. Koshelev, K. S. Kumar, P. V. Moniz, Effective models of inflation from a nonlocal framework, Phys. Rev. D 96 (10) (2017) 103503. 
URL https://doi.org/10.1103/PhysRevD.96.103503

[42]   A. S. Koshelev, A. Mazumdar, Do massive compact objects without event horizon exist in infinite derivative gravity?, Phys. Rev. D 96 (8) (2017) 084069. 
URL https://doi.org/10.1103/PhysRevD.96.084069

[43]   A. Luís, F. Domingues, L. Pereira, Can cranberries contribute to reduce the incidence of urinary tract infections? a systematic review with meta-analysis and trial sequential analysis of clinical trials, Journal of Urology 198 (3) (2017) 614–621. 
URL https://doi.org/10.1016/j.juro.2017.03.078

[44]   J. P. Mateus, C. M. Silva, Existence of periodic solutions of a periodic SEIRS model with general incidence, Nonlinear Anal. Real World Appl. 34 (2017) 379–402. 
URL https://doi.org/10.1016/j.nonrwa.2016.09.013

[45]   J. Morais, M. Bouhmadi-López, K. S. Kumar, J. Marto, Y. Tavakoli, Interacting 3-form dark energy models: Distinguishing interactions and avoiding the little sibling of the big rip, Physics of the Dark Universe 15 (2017) 7–30. 
URL https://doi.org/10.1016/j.dark.2016.11.002

[46]   J. Morais, M. Bouhmadi-López, J. Marto, 3-form cosmology: Phantom behaviour, singularities and interactions, Universe 3 (1) (2017) 21. 
URL https://doi.org/10.3390/universe3010021

[47]   B. Nolasco, R. Pacheco, Evolutes of plane curves and null curves in Minkowski 3-space, J. Geom. 108 (1) (2017) 195–214. 
URL https://doi.org/10.1007/s00022-016-0334-2

[48]   L. Pereira, On the asymptotic locations of the largest and smallest extremes of a stationary sequence, Journal of Theoretical Probability (2017) 1–14. 
URL https://doi.org/10.1007/s10959-017-0742-8

[49]   L. Pereira, A. P. Martins, H. Ferreira, Clustering of high values in random fields, Extremes 20 (4) (2017) 807–838. 
URL https://doi.org/10.1007/s10687-017-0291-7

[50]   L. Pereira, Z. Tan, Almost sure convergence for the maximum of nonstationary random fields, J. Theoret. Probab. 30 (3) (2017) 996–1013. 
URL https://doi.org/10.1007/s10959-015-0663-3

[51]   C. Santos, C. Nunes, C. Dias, J. T. Mexia, Joining models with commutative orthogonal block structure, Linear Algebra Appl. 517 (2017) 235–245. 
URL https://doi.org/10.1016/j.laa.2016.12.019

[52]   R. Serôdio, P. D. Beites, J. Vitória, Intersection of a double cone and a line in the split-quaternions context, Adv. Appl. Clifford Algebr. 27 (3) (2017) 2795–2803. 
URL https://doi.org/10.1007/s00006-017-0796-9

[53]   C. M. Silva, Existence of periodic solutions for periodic eco-epidemic models with disease in the prey, J. Math. Anal. Appl. 453 (1) (2017) 383–397. 
URL https://doi.org/10.1016/j.jmaa.2017.03.074

[54]   P. D. Vitória, C. Nunes, J. Precioso, Parents’ educational level and second-hand tobacco smoke exposure at home in a sample of portuguese children, Revista Portuguesa de Pneumologia (English Edition) 23 (4) (2017) 221–224. 
URL https://doi.org/10.1016/j.rppnen.2017.02.005

2016

[1]   I. Albarran, M. Bouhmadi-López, C. Kiefer, J. Marto, P. Vargas Moniz, Classical and quantum cosmology of the little rip abrupt event, Phys. Rev. D 94 (2016) 063536. 
URL https://doi.org/10.1103/PhysRevD.94.063536

[2]   R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque, On a nonlocal degenerate parabolic problem, Nonlinear Anal. Real World Appl. 27 (2016) 146–157. 
URL https://doi.org/10.1016/j.nonrwa.2015.07.015

[3]   R. M. P. Almeida, S. N. Antontsev, J. C. M. Duque, J. Ferreira, A reaction-diffusion model for the non-local coupled system: existence, uniqueness, long-time behaviour and localization properties of solutions, IMA J. Appl. Math. 81 (2) (2016) 344–364. 
URL https://doi.org/10.1093/imamat/hxv041

[4]   R. A. Bailey, S. S. Ferreira, D. Ferreira, C. Nunes, Estimability of variance components when all model matrices commute, Linear Algebra Appl. 492 (2016) 144–160. 
URL https://doi.org/10.1016/j.laa.2015.11.002

[5]   N. Bebiano, J. da Providência, J. da Providência, Mathematical aspects of quantum systems with a pseudo-hermitian hamiltonian, Brazilian Journal of Physics 46 (2) (2016) 152–156. 
URL https://doi.org/10.1007/s13538-015-0390-3

[6]   P. D. Beites, A. P. Nicolás, An associative triple system of the second kind, Comm. Algebra 44 (11) (2016) 5027–5043. 
URL https://doi.org/10.1080/00927872.2016.1149185

[7]   A. J. G. Bento, C. M. Silva, Nonuniform dichotomic behavior: Lipschitz invariant manifolds for difference equations, Port. Math. 73 (1) (2016) 41–64. 
URL https://doi.org/10.4171/PM/1975

[8]   M. Bessa, S. Dias, A. A. Pinto, Explosion of differentiability for equivalencies between Anosov flows on 3-manifolds, Proc. Amer. Math. Soc. 144 (9) (2016) 3757–3766. 
URL https://doi.org/10.1090/proc/12977

[9]   M. Bessa, A. A. P. Rodrigues, A dichotomy in area-preserving reversible maps, Qual. Theory Dyn. Syst. 15 (2) (2016) 309–326. 
URL https://doi.org/10.1007/s12346-015-0155-y

[10]   M. Bessa, A. A. P. Rodrigues, Dynamics of conservative Bykov cycles: tangencies, generalized Cocoon bifurcations and elliptic solutions, J. Differential Equations 261 (2) (2016) 1176–1202. 
URL https://doi.org/10.1016/j.jde.2016.03.040

[11]   M. Bessa, M. Stadlbauer, On the Lyapunov spectrum of relative transfer operators, Stoch. Dyn. 16 (6) (2016) 1650024, 25. 
URL https://doi.org/10.1142/S0219493716500246

[12]   G. Bettencourt, S. Mendes, Homomorphisms to ℝ generated by quasimorphisms, Mediterr. J. Math. 13 (5) (2016) 3205–3219. 
URL https://doi.org/10.1007/s00009-016-0680-1

[13]   Z. Bouabdallaoui, A. Errahmani, M. Bouhmadi-López, T. Ouali, Constraints on tachyon inflationary models with an ads/cft correspondence, Phys. Rev. D 94 (2016) 123508. 
URL https://doi.org/10.1103/PhysRevD.94.123508

[14]   M. Bouhmadi-López, C.-Y. Chen, Towards the quantization of Eddington-inspired-Born-Infeld theory, J. Cosmol. Astropart. Phys. (11) (2016) 023. 
URL https://doi.org/10.1088/1475-7516/2016/11/023

[15]   M. Bouhmadi-López, J. Morais, A. Zhuk, The late universe with non-linear interaction in the dark sector: The coincidence problem, Physics of the Dark Universe 14 (2016) 11–20. 
URL https://doi.org/10.1016/j.dark.2016.08.001

[16]   M. Bouhmadi-López, K. Sravan Kumar, J. Marto, J. Morais, A. Zhuk, K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration, J. Cosmol. Astropart. Phys. (7) (2016) 050. 
URL https://doi.org/10.1088/1475-7516/2016/07/050

[17]   A. Burgazli, A. Zhuk, J. Morais, M. Bouhmadi-López, K. Sravan Kumar, Coupled scalar fields in the late Universe: the mechanical approach and the late cosmic acceleration, J. Cosmol. Astropart. Phys. (9) (2016) 045. 
URL https://doi.org/10.1088/1475-7516/2016/09/045

[18]   R. Campos, G. Dias, A. Jorge, C. Nunes, Gte-rank: A time-aware search engine to answer time-sensitive queries, Information Processing and Management 52 (2) (2016) 273–298. 
URL https://doi.org/10.1016/j.ipm.2015.07.006

[19]   C.-Y. Chen, M. Bouhmadi-López, P. Chen, Modified eddington-inspired-born-infeld gravity with a trace term, Eur. Phys. J. C 76 (1) (2016) 1–10. 
URL https://doi.org/10.1140/epjc/s10052-016-3879-1

[20]   I. Dimitrijevic, B. Dragovich, J. Stankovic, A. S. Koshelev, Z. Rakic, On nonlocal modified gravity and its cosmological solutions, in: Lie theory and its applications in physics, vol. 191 of Springer Proc. Math. Stat., Springer, Singapore, 2016, pp. 35–51. 
URL https://doi.org/10.1007/978-981-10-2636-2_3

[21]   M. A. Duffner, H. F. da Cruz, Rank nonincreasing linear maps preserving the determinant of tensor product of matrices, Linear Algebra Appl. 510 (2016) 186–191. 
URL https://doi.org/10.1016/j.laa.2016.08.021

[22]   J. C. M. Duque, R. M. P. Almeida, S. N. Antontsev, J. Ferreira, The Euler-Galerkin finite element method for a nonlocal coupled system of reaction-diffusion type, J. Comput. Appl. Math. 296 (2016) 116–126. 
URL https://doi.org/10.1016/j.cam.2015.09.019

[23]   S. S. Ferreira, C. Nunes, D. Ferreira, E. Moreira, J. T. Mexia, Estimation and orthogonal block structure, Hacet. J. Math. Stat. 45 (2) (2016) 541–548. 
URL https://doi.org/10.15672/HJMS.2015589756

[24]   C. Fonseca, A. P. Martins, L. Pereira, H. Ferreira, Dependence matrices for spatial extreme events, Comm. Statist. Theory Methods 45 (21) (2016) 6321–6341. 
URL https://doi.org/10.1080/03610926.2013.781649

[25]   S. Giardino, Quaternionic particle in a relativistic box, Found. Phys. 46 (4) (2016) 473–483. 
URL https://doi.org/10.1007/s10701-015-9974-6

[26]   S. Giardino, V. Rivelles, Tunnelling of pulsating strings in deformed minkowski spacetime, Eur. Phys. J. C 76 (5) (2016) 234. 
URL https://doi.org/10.1140/epjc/s10052-016-4071-3

[27]   S. Jalalzadeh, T. Rostami, P. V. Moniz, Quantum cosmology: from hidden symmetries towards a new (supersymmetric) perspective, Internat. J. Modern Phys. D 25 (3) (2016) 1630009, 38. 
URL https://doi.org/10.1142/S0218271816300093

[28]   A. S. Koshelev, L. Modesto, L. Rachwał, A. A. Starobinsky, Occurrence of exact R2 inflation in non-local UV-complete gravity, J. High Energy Phys. (11) (2016) 067. 
URL https://doi.org/10.1007/JHEP11(2016)067

[29]   K. S. Kumar, J. C. Bueno Sánchez, C. Escamilla-Rivera, J. Marto, P. V. Moniz, Dbi Galileon inflation in the light of Planck 2015, J. Cosmol. Astropart. Phys. (2) (2016) 063. 
URL https://doi.org/10.1088/1475-7516/2016/02/063

[30]   K. S. Kumar, J. Marto, P. V. Moniz, S. Das, Non-slow-roll dynamics in α-attractors, J. Cosmol. Astropart. Phys. (4) (2016) 005. 
URL https://doi.org/10.1088/1475-7516/2016/04/005

[31]   K. S. Kumar, D. J. Mulryne, N. J. Nunes, J. Marto, P. V. Moniz, Non-Gaussianity in multiple three-form field inflation, Phys. Rev. D 94 (2016) 103504. 
URL https://doi.org/10.1103/PhysRevD.94.103504

[32]   D. I. C. Mendes, Involution rings with unique minimal *-biideal, Algebra Discrete Math. 21 (2) (2016) 255–263. 
URL http://www.mathnet.ru/links/af0dfc7180f1b5b446a67c3ee39b9945/adm566.pdf

[33]   D. I. C. Mendes, Strongly filial rings, Beitr. Algebra Geom. 57 (4) (2016) 831–840. 
URL https://doi.org/10.1007/s13366-015-0261-7

[34]   M. E. D. Neves, L. M. A. D. Gonçalves, M. J. S. Ribeiro, P. J. S. Feiteira, C. M. P. Viseu, The unidirectional relationship between consumer confidence and psi-20 returns – the influence of the economic cycle, Revista Contabilidade e Financas 27 (72) (2016) 363–377. 
URL https://doi.org/10.1590/1808-057×201602280

[35]   N. Pombo, P. Rebelo, P. Araújo, J. Viana, Design and evaluation of a decision support system for pain management based on data imputation and statistical models, Measurement: Journal of the International Measurement Confederation 93 (2016) 480–489. 
URL https://doi.org/10.1016/j.measurement.2016.07.009

[36]   S. M. M. Rasouli, P. V. Moniz, Exact cosmological solutions in modified Brans-Dicke theory, Classical Quantum Gravity 33 (3) (2016) 035006, 28. 
URL https://doi.org/10.1088/0264-9381/33/3/035006

[37]   S. M. M. Rasouli, A. H. Ziaie, S. Jalalzadeh, P. V. Moniz, Non-singular Brans-Dicke collapse in deformed phase space, Ann. Physics 375 (2016) 154–178. 
URL https://doi.org/10.1016/j.aop.2016.09.007

[38]   C. M. Silva, S. Rosa, H. Alves, P. G. Carvalho, A mathematical model for the customer dynamics based on marketing policy, Appl. Math. Comput. 273 (2016) 42–53. 
URL https://doi.org/10.1016/j.amc.2015.09.050

2015

[1]   O. Akarsu, M. Bouhmadi-López, M. Brilenkov, R. Brilenkov, M. Eingorn, A. Zhuk, Are dark energy models with variable EoS parameter compatible with the late inhomogeneous Universe?, J. Cosmol. Astropart. Phys. (7) (2015) 038. 
URL https://doi.org/10.1088/1475-7516/2015/07/038

[2]   I. Albarran, M. Bouhmadi-López, Quantisation of the holographic Ricci dark energy model, J. Cosmol. Astropart. Phys. (8) (2015) 051. 
URL https://doi.org/10.1088/1475-7516/2015/08/051

[3]   I. Albarran, M. Bouhmadi-López, F. Cabral, P. Martín-Moruno, The quantum realm of the “little sibling” of the big rip singularity, J. Cosmol. Astropart. Phys. (11) (2015) 044. 
URL https://doi.org/10.1088/1475-7516/2015/11/044

[4]   C. R. Almeida, A. B. Batista, J. C. Fabris, P. R. L. V. Moniz, Quantum cosmology with scalar fields: self-adjointness and cosmological scenarios, Gravit. Cosmol. 21 (3) (2015) 191–199. 
URL https://doi.org/10.1134/S0202289315030020

[5]   R. M. P. Almeida, J. C. M. Duque, J. Ferreira, R. J. Robalo, The Crank-Nicolson-Galerkin finite element method for a nonlocal parabolic equation with moving boundaries, Numer. Methods Partial Differential Equations 31 (5) (2015) 1515–1533. 
URL https://doi.org/10.1002/num.21957

[6]   N. Bebiano, J. da Providência, A. Nata, J. P. da Providência, Computing the numerical range of Krein space operators, Open Math. 13 (2015) 146–156. 
URL https://doi.org/10.1515/math-2015-0014

[7]   N. Bebiano, J. da Providência, A. Nata, J. P. da Providência, An inverse indefinite numerical range problem, Linear Algebra Appl. 470 (2015) 200–215. 
URL https://doi.org/10.1016/j.laa.2014.07.038

[8]   M. Bessa, M. Carvalho, A. Rodrigues, Generic area-preserving reversible diffeomorphisms, Nonlinearity 28 (6) (2015) 1695–1720. 
URL https://doi.org/10.1088/0951-7715/28/6/1695

[9]   M. Bessa, M. Lee, X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. Ser. B Engl. Ed. 35 (3) (2015) 583–600. 
URL https://doi.org/10.1016/S0252-9602(15)30005-9

[10]   M. Bessa, R. Ribeiro, Conservative flows with various types of shadowing, Chaos Solitons Fractals 75 (2015) 243–252. 
URL https://doi.org/10.1016/j.chaos.2015.02.022

[11]   M. Bessa, M. J. Torres, The C0 general density theorem for geodesic flows, C. R. Math. Acad. Sci. Paris 353 (6) (2015) 545–549. 
URL https://doi.org/10.1016/j.crma.2015.03.012

[12]   M. Bessa, P. Varandas, Trivial and simple spectrum for SL(d, ) cocycles with free base and fiber dynamics, Acta Math. Sin. (Engl. Ser.) 31 (7) (2015) 1113–1122. 
URL https://doi.org/10.1007/s10114-015-4417-z

[13]   G. Bettencourt, S. Mendes, Homomorphism to ℝ of semidirect products: a dynamical construction, Appl. Math. Inf. Sci. 9 (5) (2015) 2395–2401.

[14]   M. Bouhmadi-López, M. Brilenkov, R. Brilenkov, J. Morais, A. Zhuk, Scalar perturbations in the late Universe: viability of the Chaplygin gas models, J. Cosmol. Astropart. Phys. (12) (2015) 037. 
URL https://doi.org/10.1088/1475-7516/2015/12/037

[15]   M. Bouhmadi-López, C.-Y. Chen, P. Chen, Eddington–born–infeld cosmology: a cosmographic approach, a tale of doomsdays and the fate of bound structures, Eur. Phys. J. C 75 (2) (2015) 90. 
URL https://doi.org/10.1140/epjc/s10052-015-3257-4

[16]   M. Bouhmadi-López, A. Errahmani, P. Martín-Moruno, T. Ouali, Y. Tavakoli, The little sibling of the big rip singularity, Internat. J. Modern Phys. D 24 (10) (2015) 1550078, 20. 
URL https://doi.org/10.1142/S0218271815500789

[17]   F. Carvalho, J. T. Mexia, C. Santos, C. Nunes, Inference for types and structured families of commutative orthogonal block structures, Metrika 78 (3) (2015) 337–372. 
URL https://doi.org/10.1007/s00184-014-0506-8

[18]   N. Correia, R. Pacheco, Harmonic maps of finite uniton number and their canonical elements, Ann. Global Anal. Geom. 47 (4) (2015) 335–358. 
URL https://doi.org/10.1007/s10455-014-9448-7

[19]   J. C. M. Duque, R. M. P. Almeida, S. N. Antontsev, Application of the moving mesh method to the porous medium equation with variable exponent, Math. Comput. Simulation 118 (2015) 177–185. 
URL https://doi.org/10.1016/j.matcom.2014.11.025

[20]   R. Fernandes, H. F. da Cruz, A canonical construction for nonnegative integral matrices with given line sums, Linear Algebra Appl. 484 (2015) 304–321. 
URL https://doi.org/10.1016/j.laa.2015.06.033

[21]   H. Ferreira, Max-min dependence coefficients for multivariate extreme value distributions, in: Contributions in statistics and inference, vol. 47 of Textos Mat./Math. Texts, Univ. Coimbra, Coimbra, 2015, pp. 13–24.

[22]   H. Ferreira, M. Ferreira, Extremes of scale mixtures of multivariate time series, J. Multivariate Anal. 137 (2015) 82–99. 
URL https://doi.org/10.1016/j.jmva.2015.02.002

[23]   H. Ferreira, L. Pereira, Dependence of maxima in space, Journal of Physics: Conference Series 574 (1). 
URL https://doi.org/10.1088/1742-6596/574/1/012021

[24]   C. Fonseca, L. Pereira, H. Ferreira, A. P. Martins, Generalized madogram and pairwise dependence of maxima over two regions of a random field, Kybernetika (Prague) 51 (2) (2015) 193–211. 
URL https://doi.org/10.14736/kyb-2015-2-0193

[25]   S. Jalalzadeh, T. Rostami, P. V. Moniz, On the relation between boundary proposals and hidden symmetries of the extended pre-big bang quantum cosmology, Eur. Phys. J. C 75 (1) (2015) 38. 
URL https://doi.org/10.1140/epjc/s10052-014-3241-4

[26]   Y.-W. Liu, K. Izumi, M. Bouhmadi-López, P. Chen, Ghosts in the self-accelerating dgp branch with gauss–bonnet effect, Eur. Phys. J. C 75 (6) (2015) 248. 
URL https://doi.org/10.1140/epjc/s10052-015-3463-0

[27]   J. Marto, Y. Tavakoli, P. V. Moniz, Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid, Internat. J. Modern Phys. D 24 (3) (2015) 1550025, 21. 
URL https://doi.org/10.1142/S021827181550025X

[28]   J. Morais, M. Bouhmadi-López, S. Capozziello, Can f(R) gravity contribute to (dark) radiation?, J. Cosmol. Astropart. Phys. (9) (2015) 041. 
URL https://doi.org/10.1088/1475-7516/2015/09/041

[29]   T. Rostami, S. Jalalzadeh, P. V. Moniz, Quantum cosmological intertwining: factor ordering and boundary conditions from hidden symmetries, Phys. Rev. D 92 (2) (2015) 023526, 9. 
URL https://doi.org/10.1103/PhysRevD.92.023526

[30]   P. Saraiva, P. D. Beites, J. Fernandes, C. Costa, J. Vitória, Best pair of two skew lines over the octonions, Adv. Appl. Clifford Algebr. 25 (3) (2015) 657–672. 
URL https://doi.org/10.1007/s00006-015-0527-z

[31]   A. M. Simões, A transmission problem for the Helmholtz equation with higher order boundary conditions, Oper. Matrices 9 (1) (2015) 203–223. 
URL https://doi.org/10.7153/oam-09-12

[32]   A. J. Varandas, J. da Providência, M. Brajczewska, J. P. da Providência, On dipositronium and molecular hydrogen: similarities and differences, Eur. Phys. J. D 69 (4) (2015) 114. 
URL https://doi.org/10.1140/epjd/e2015-50818-0

2014

[1]   N. Bebiano, J. da Providência, A. Nata, J. P. da Providência, Revisiting the inverse field of values problem, Electron. Trans. Numer. Anal. 42 (2014) 1–12. 
URL http://www.emis.de/journals/ETNA/vol.42.2014/pp1-12.dir/pp1-12.pdf

[2]   A. J. G. Bento, C. M. Silva, Nonuniform dichotomic behavior: Lipschitz invariant manifolds for ODEs, Bull. Sci. Math. 138 (1) (2014) 89–109. 
URL https://doi.org/10.1016/j.bulsci.2013.09.008

[3]   A. Bernardino, R. Pacheco, M. Silva, The gap structure of a family of integer subsets, Electron. J. Combin. 21 (1) (2014) Paper 1.47, 8. 
URL http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p47/pdf

[4]   M. Bessa, M. Lee, S. Vaz, Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Math. Sin. (Engl. Ser.) 30 (6) (2014) 1007–1020. 
URL https://doi.org/10.1007/s10114-014-3093-8

[5]   M. Bessa, J. Lopes Dias, Hamiltonian suspension of perturbed Poincaré sections and an application, Math. Proc. Cambridge Philos. Soc. 157 (1) (2014) 101–112. 
URL https://doi.org/10.1017/S0305004114000140

[6]   M. Bessa, S. Vaz, Stable weak shadowable symplectomorphisms are partially hyperbolic, Commun. Korean Math. Soc. 29 (2) (2014) 285–293. 
URL https://doi.org/10.4134/CKMS.2014.29.2.285

[7]   M. Bessa, H. Vilarinho, Fine properties of Lp-cocycles which allow abundance of simple and trivial spectrum, J. Differential Equations 256 (7) (2014) 2337–2367. 
URL https://doi.org/10.1016/j.jde.2014.01.003

[8]   G. Bettencourt, A case leading to rationality of the drift, in: Nonlinear maps and their applications, vol. 57 of Springer Proc. Math. Stat., Springer, New York, 2014, pp. 35–38. 
URL https://doi.org/10.1007/978-1-4614-9161-3_5

[9]   M. Bouhmadi-López, C.-Y. Chen, P. I. Chen, Cosmological singularities in born-infeld determinantal gravity, Phys. Rev. D 90 (2014) 123518. 
URL https://doi.org/10.1103/PhysRevD.90.123518

[10]   M. Bouhmadi-López, F. S. N. Lobo, P. Martí n Moruno, Wormholes minimally violating the null energy condition, J. Cosmol. Astropart. Phys. (11) (2014) 007. 
URL https://doi.org/10.1088/1475-7516/2014/11/007

[11]   N. Correia, R. Pacheco, Extended solutions of the harmonic map equation in the special unitary group, Q. J. Math. 65 (2) (2014) 637–654. 
URL https://doi.org/10.1093/qmath/hat018

[12]   J. C. M. Duque, R. M. P. Almeida, S. N. Antontsev, Numerical study of the porous medium equation with absorption, variable exponents of nonlinearity and free boundary, Appl. Math. Comput. 235 (2014) 137–147. 
URL https://doi.org/10.1016/j.amc.2014.02.100

[13]   R. Fernandes, H. F. da Cruz, On the term rank partition, Linear Algebra Appl. 458 (2014) 134–148. 
URL https://doi.org/10.1016/j.laa.2014.05.045

[14]   R. Fernandes, H. F. da Cruz, Sets of Parter vertices which are Parter sets, Linear Algebra Appl. 448 (2014) 37–54. 
URL https://doi.org/10.1016/j.laa.2014.02.004

[15]   H. Ferreira, Bivariate tail dependence and the generation of multivariate extreme value distributions, Comm. Statist. Theory Methods 43 (24) (2014) 5318–5325. 
URL https://doi.org/10.1080/03610926.2012.744052

[16]   H. Ferreira, M. Ferreira, Extremal behavior of pMAX processes, Statist. Probab. Lett. 93 (2014) 46–57. 
URL https://doi.org/10.1016/j.spl.2014.06.009

[17]   C. Fonseca, H. Ferreira, L. Pereira, A. P. Martins, Stability and contagion measures for spatial extreme value analyzes, Kybernetika (Prague) 50 (6) (2014) 914–928. 
URL https://doi.org/10.14736/kyb-2014-6-0914

[18]   S. Jalalzadeh, P. V. Moniz, Dirac observables and boundary proposals in quantum cosmology, Phys. Rev. D 89 (2014) 083504. 
URL https://doi.org/10.1103/PhysRevD.89.083504

[19]   S. Jalalzadeh, S. M. M. Rasouli, P. V. Moniz, Quantum cosmology, minimal length, and holography, Phys. Rev. D 90 (2014) 023541. 
URL https://doi.org/10.1103/PhysRevD.90.023541

[20]   K. S. Kumar, J. Marto, N. J. Nunes, P. V. Moniz, Inflation in a two 3-form fields scenario, J. Cosmol. Astropart. Phys. (6) (2014) 064. 
URL https://doi.org/10.1088/1475-7516/2014/06/064

[21]   A. P. Martins, H. Ferreira, Extremal properties of M4 processes, TEST 23 (2) (2014) 388–408. 
URL https://doi.org/10.1007/s11749-014-0358-6

[22]   J. P. Mateus, C. M. Silva, A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput. 247 (2014) 169–189. 
URL https://doi.org/10.1016/j.amc.2014.08.078

[23]   D. I. C. Mendes, A note on weak regularity in general rings, Beitr. Algebra Geom. 55 (2) (2014) 365–369. 
URL https://doi.org/10.1007/s13366-013-0162-6

[24]   P. V. Moniz, Supersymmetric quantum cosmology: A ’socratic’ guide, General Relativity and Gravitation 46 (1) (2014) 1–35. 
URL https://doi.org/10.1007/s10714-013-1618-6

[25]   C. Nunes, D. Ferreira, S. S. Ferreira, J. T. Mexia, Fixed effects ANOVA: an extension to samples with random size, J. Stat. Comput. Simul. 84 (11) (2014) 2316–2328. 
URL https://doi.org/10.1080/00949655.2013.791293

[26]   S. M. M. Rasouli, Kasner solution in Brans-Dicke theory and its corresponding reduced cosmology, in: Progress in mathematical relativity, gravitation and cosmology, vol. 60 of Springer Proc. Math. Stat., Springer, Heidelberg, 2014, pp. 371–375. 
URL https://doi.org/10.1007/978-3-642-40157-2_55

[27]   S. M. M. Rasouli, M. Farhoudi, P. V. Moniz, Modified Brans-Dicke theory in arbitrary dimensions, Classical Quantum Gravity 31 (11) (2014) 115002, 26. 
URL https://doi.org/10.1088/0264-9381/31/11/115002

[28]   S. M. M. Rasouli, P. V. Moniz, Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation, Phys. Rev. D 90 (8) (2014) 083533. 
URL https://doi.org/10.1103/PhysRevD.90.083533

[29]   S. M. M. Rasouli, A. H. Ziaie, J. Marto, P. V. Moniz, Gravitational collapse of a homogeneous scalar field in deformed phase space, Phys. Rev. D 89 (4) (2014) 044028. 
URL https://doi.org/10.1103/PhysRevD.89.044028

[30]   R. J. Robalo, R. M. P. Almeida, M. d. C. Coimbra, J. Ferreira, A reaction-diffusion model for a class of nonlinear parabolic equations with moving boundaries: existence, uniqueness, exponential decay and simulation, Appl. Math. Model. 38 (23) (2014) 5609–5622. 
URL https://doi.org/10.1016/j.apm.2014.04.045

[31]   H. Rocha, D. Marinho, S. Ferreira, A. Costa, Management and teaching methodology of swimming lessons in the portuguese primary schools [organização e metodologia de ensino da natação no 1 ciclo do ensino básico em portugal], Motricidade 10 (2) (2014) 45–59. 
URL https://doi.org/10.6063/motricidade.10(2).2709

[32]   H. Saberi Nik, P. Rebelo, Multistage spectral relaxation method for solving the hyperchaotic complex systems, Scientific World Journal 2014 (2014) 943293. 
URL https://doi.org/10.1155/2014/943293

[33]   C. M. Silva, A nonautonomous epidemic model with general incidence and isolation, Math. Methods Appl. Sci. 37 (13) (2014) 1974–1991. 
URL https://doi.org/10.1002/mma.2950

[34]   A. Simões, Fredholm characterization for a wave diffraction problem with higher order boundary conditions: Impedance case, WSEAS Transactions on Mathematics 13 (2014) 535–546. 
URL http://www.wseas.org/multimedia/journals/mathematics/2014/a665706-081.pdf

[35]   Y. Tavakoli, A. Dapor, J. Marto, Dynamics of apparent horizons in quantum gravitational collapse, in: Progress in mathematical relativity, gravitation and cosmology, vol. 60 of Springer Proc. Math. Stat., Springer, Heidelberg, 2014, pp. 427–431. 
URL https://doi.org/10.1007/978-3-642-40157-2_65

[36]   Y. Tavakoli, J. Marto, A. Dapor, Semiclassical dynamics of horizons in spherically symmetric collapse, Internat. J. Modern Phys. D 23 (7) (2014) 1450061. 
URL https://doi.org/10.1142/S0218271814500618

[37]   C. Viseu, L. Pereira, A. P. Martins, H. Ferreira, On the multivariate upcrossings index, Comm. Statist. Theory Methods 43 (6) (2014) 1277–1292. 
URL https://doi.org/10.1080/03610926.2012.661507

[38]   A. H. Ziaie, P. V. Moniz, A. Ranjbar, H. R. Sepangi, Einstein–cartan gravitational collapse of a homogeneous weyssenhoff fluid, Eur. Phys. J. C 74 (11) (2014) 3154. 
URL https://doi.org/10.1140/epjc/s10052-014-3154-2

2013

[1]   J. F. Alves, H. Vilarinho, Strong stochastic stability for non-uniformly expanding maps, Ergodic Theory Dynam. Systems 33 (3) (2013) 647–692. 
URL https://doi.org/10.1017/S0143385712000077

[2]   A. J. G. Bento, C. M. Silva, Generalized nonuniform dichotomies and local stable manifolds, J. Dynam. Differential Equations 25 (4) (2013) 1139–1158. 
URL https://doi.org/10.1007/s10884-013-9331-4

[3]   M. Bessa, C1-stably shadowable conservative diffeomorphisms are Anosov, Bull. Korean Math. Soc. 50 (5) (2013) 1495–1499. 
URL https://doi.org/10.4134/BKMS.2013.50.5.1495

[4]   M. Bessa, On C1-generic chaotic systems in three-manifolds, Qual. Theory Dyn. Syst. 12 (2) (2013) 323–334. 
URL https://doi.org/10.1007/s12346-012-0091-z

[5]   M. Bessa, M. Carvalho, Non-uniform hyperbolicity for infinite dimensional cocycles, Stoch. Dyn. 13 (3) (2013) 1250026, 17. 
URL https://doi.org/10.1142/S0219493712500268

[6]   M. Bessa, J. Rocha, Contributions to the geometric and ergodic theory of conservative flows, Ergodic Theory Dynam. Systems 33 (6) (2013) 1709–1731. 
URL https://doi.org/10.1017/etds.2012.110

[7]   M. Bessa, J. Rocha, M. J. Torres, Hyperbolicity and stability for Hamiltonian flows, J. Differential Equations 254 (1) (2013) 309–322. 
URL https://doi.org/10.1016/j.jde.2012.08.010

[8]   M. Bessa, J. Rocha, M. J. Torres, Shades of hyperbolicity for Hamiltonians, Nonlinearity 26 (10) (2013) 2851–2873. 
URL https://doi.org/10.1088/0951-7715/26/10/2851

[9]   J. C. M. Duque, R. M. P. Almeida, S. N. Antontsev, Convergence of the finite element method for the porous media equation with variable exponent, SIAM J. Numer. Anal. 51 (6) (2013) 3483–3504. 
URL https://doi.org/10.1137/120897006

[10]   M. Ferreira, H. Ferreira, Extremes of multivariate ARMAX processes, TEST 22 (4) (2013) 606–627. 
URL https://doi.org/10.1007/s11749-013-0326-6

[11]   S. S. Ferreira, D. Ferreira, C. Nunes, J. T. Mexia, Estimation of variance components in linear mixed models with commutative orthogonal block structure, Rev. Colombiana Estadíst. 36 (2) (2013) 259–269. 
URL https://revistas.unal.edu.co/index.php/estad/article/download/44347/47656

[12]   D. I. C. Mendes, A note on strongly f-regular rings, Math. Pannon. 24 (2) (2013) 221–230.

[13]   C. Nunes, D. Ferreira, S. Ferreira, J. T. Mexia, Generalized tests in models with random perturbations: the truncated normal case, in: Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications, Stud. Theor. Appl. Stat. Sel. Papers Stat. Soc., Springer, Heidelberg, 2013, pp. 307–315. 
URL https://doi.org/10.1007/978-3-642-34904-1_32

[14]   C. Nunes, M. M. Oliveira, J. T. Mexia, Application domains for the delta method, Statistics 47 (2) (2013) 317–328. 
URL https://doi.org/10.1080/02331888.2011.605892

[15]   R. Pacheco, Immersed surfaces in Lie algebras associated to primitive harmonic maps, Geom. Dedicata 163 (2013) 379–390. 
URL https://doi.org/10.1007/s10711-012-9755-8

[16]   R. Pacheco, Index and nullity of a family of harmonic tori in the sphere, Adv. Geom. 13 (3) (2013) 381–388. 
URL https://doi.org/10.1515/advgeom-2013-0004

[17]   R. Pacheco, H. Vilarinho, Metrics on tiling spaces, local isomorphism and an application of Brown’s lemma, Monatsh. Math. 170 (2) (2013) 205–225. 
URL https://doi.org/10.1007/s00605-013-0484-3

[18]   R. Pacheco, H. Vilarinho, Statistical stability for multi-substitution tiling spaces, Discrete Contin. Dyn. Syst. 33 (10) (2013) 4579–4594. 
URL https://doi.org/10.3934/dcds.2013.33.4579

[19]   E. Pereira, C. M. Silva, J. A. L. da Silva, A generalized nonautonomous SIRVS model, Math. Methods Appl. Sci. 36 (3) (2013) 275–289. 
URL https://doi.org/10.1002/mma.2586

[20]   L. Pereira, Asymptotic location of largest values of a stationary random field, Comm. Statist. Theory Methods 42 (24) (2013) 4513–4524. 
URL https://doi.org/10.1080/03610926.2011.650270

[21]   L. Pereira, On the maximum and minimum of a stationary random field, in: Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications, Stud. Theor. Appl. Stat. Sel. Papers Stat. Soc., Springer, Heidelberg, 2013, pp. 337–345. 
URL https://doi.org/10.1007/978-3-642-34904-1_35

[22]   H. Saberi Nik, P. Rebelo, M. Shamsyeh Zahedi, Solution of infinite horizon nonlinear optimal control problems by piecewise adomian decomposition method, Math. Model. Anal. 18 (4) (2013) 543–560. 
URL https://doi.org/10.3846/13926292.2013.841598

[23]   J. R. Sebastião, A. P. Martins, H. Ferreira, L. Pereira, Estimating the upcrossings index, TEST 22 (4) (2013) 549–579. 
URL https://doi.org/10.1007/s11749-013-0315-9

[24]   C. Viseu, L. Pereira, A. P. Martins, H. Ferreira, Dependence of multivariate extremes, in: Advances in regression, survival analysis, extreme values, Markov processes and other statistical applications, Stud. Theor. Appl. Stat. Sel. Papers Stat. Soc., Springer, Heidelberg, 2013, pp. 463–471. 
URL https://doi.org/10.1007/978-3-642-34904-1_49